A note on uniquely 10‐colorable graphs
نویسندگان
چکیده
Hadwiger conjectured that every graph of chromatic number k admits a clique minor order k. Here we prove for ≤ 10, with unique k-coloring (up to the color names) The proof does not rely on Four Color Theorem.
منابع مشابه
A note on uniquely embeddable graphs
Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n−2, then there is an embedding G into its complement G. In this note, we consider a problem concerning the uniqueness of such an embedding.
متن کاملA Note on Uniquely H-colourable Graphs
For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.
متن کاملA note on uniquely pancyclic graphs
In this paper we consider uniquely pancyclic graphs, i.e. n vertex graphs with exactly one cycle of each length from 3 to n. The first result of the paper gives new upper and lower bounds on the number of edges in a uniquely pancyclic graph. Next we report on a computer search for new uniquely pancyclic graphs. We found that there are no new such graphs on n ≤ 59 vertices and that there are no ...
متن کاملA note on uniquely H-colorable graphs
For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.
متن کاملA note on uniquely (nil) clean ring
A ring R is uniquely (nil) clean in case for any $a in R$ there exists a uniquely idempotent $ein R$ such that $a-e$ is invertible (nilpotent). Let $C =(A V W B)$ be the Morita Context ring. We determine conditions under which the rings $A,B$ are uniquely (nil) clean. Moreover we show that the center of a uniquely (nil) clean ring is uniquely (nil) clean.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2021
ISSN: ['0364-9024', '1097-0118']
DOI: https://doi.org/10.1002/jgt.22679